A neurofuzzy color image segmentation method for wood surface defect detection

نویسندگان

  • Gonzalo A. Ruz
  • Pablo A. Estévez
  • Claudio A. Perez
چکیده

In the last decades, several automated visual inspection (AVI) systems have been developed and applied to a wide range of products, including wood (Pham and Alcock 2003). AVI is an automated form of quality control normally achieved using a camera connected to a computer. The AVI framework includes five processing stages: image acquisition, image enhancement, image segmentation, feature extraction, and classification. A review of AVI research applied to the inspection of wood boards concluded that segmentation is often the most timeconsuming part of the process, and that it usually does not locate all defects properly. It is necessary to develop new segmentation algorithms that can separate all defects from clear wood in the image (Pham and Alcock 1998).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Image segmentation using fuzzy min-max neural networks for wood defect detection

In this work a colour image segmentation method for wood surface defect detection is presented. In an automated visual inspection system for wood boards, the image segmentation task aims to obtain a high defect detection rate with a low false positive rate, i.e., clear wood areas identified as defect regions. The proposed method is called FMMIS (Fuzzy Min-Max neural network for Image Segmentati...

متن کامل

Feature Identification in Wooden Boards Using Color Image Segmentation

(ABSTRACT) Many different types of features can appear on the surface of wooden boards, lineals or parts. Some of these features should not appear on the surfaces of wood products. These features then become undesirable or removable defects for those products. To manufacture these products boards are cutup in such a way that these undesirable defects will not appear in the final product. Studie...

متن کامل

Robust Potato Color Image Segmentation using Adaptive Fuzzy Inference System

Potato image segmentation is an important part of image-based potato defect detection. This paper presents a robust potato color image segmentation through a combination of a fuzzy rule based system, an image thresholding based on Genetic Algorithm (GA) optimization and morphological operators. The proposed potato color image segmentation is robust against variation of background, distance and ...

متن کامل

کاهش رنگ تصاویر با شبکه‌های عصبی خودسامانده چندمرحله‌ای و ویژگی‌های افزونه

Reducing the number of colors in an image while preserving its quality, is of importance in many applications such as image analysis and compression. It also decreases memory and transmission bandwidth requirements. Moreover, classification of image colors is applicable in image segmentation and object detection and separation, as well as producing pseudo-color images. In this paper, the Kohene...

متن کامل

SIDF: A Novel Framework for Accurate Surgical Instrument Detection in Laparoscopic Video Frames

Background and Objectives: Identification of surgical instruments in laparoscopic video images has several biomedical applications. While several methods have been proposed for accurate detection of surgical instruments, the accuracy of these methods is still challenged high complexity of the laparoscopic video images. This paper introduces a Surgical Instrument Detection Framework (SIDF) for a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005